Guillaume Adeux
2018-09-05 08:43:39 UTC
Hi mixmoders,
I have the following model:
mod=glmer(Weed_density~block+scale(year)*syst*timing+(1|year)+(1|plot)+(1|plot:year)+(1|ID_quadrat)+(1|OLRE)+offset(log(size_quadrat)),family=poisson(link="log"),dat=WEED)
I have a significant triple interaction between time : treatment : season.
Time is continuous, syst(=treatment) has 5 levels and season(=sampling
session) has two levels.
Here is the model output:
Generalized linear mixed model fit by maximum likelihood (Laplace
Approximation) ['glmerMod']
Family: poisson ( log )
Formula: WDall ~ block + scale(year) * syst * timing + (1 | year) + (1
| plot) + (1 | plot:year) + (1 | ID_quadrat) + (1 | OLRE) +
offset(log(size_quadrat))
Data: WEED_paired_2
Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2e+05))
AIC BIC logLik deviance df.resid
21206.3 21371.9 -10577.2 21154.3 4286
Scaled residuals:
Min 1Q Median 3Q Max
-1.6531 -0.4373 -0.1646 0.1426 2.6313
Random effects:
Groups Name Variance Std.Dev.
OLRE (Intercept) 4.456e-01 6.675e-01
ID_quadrat (Intercept) 1.011e+00 1.006e+00
plot:year (Intercept) 1.429e+00 1.195e+00
year (Intercept) 5.635e-15 7.506e-08
plot (Intercept) 0.000e+00 0.000e+00
Number of obs: 4312, groups: OLRE, 4312; ID_quadrat, 2156; plot:year,
86; year, 17; plot, 10
Fixed effects:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.84765 0.33352 -2.542 0.011036 *
blockD -0.28663 0.27596 -1.039 0.298971
scale(year) 0.11385 0.25128 0.453 0.650500
systS2 2.21797 0.43765 5.068 4.02e-07 ***
systS3 2.97934 0.42857 6.952 3.61e-12 ***
systS4 2.64787 0.43488 6.089 1.14e-09 ***
systS5 0.55059 0.45565 1.208 0.226912
timingavant1 1.87971 0.10286 18.275 < 2e-16 ***
scale(year):systS2 0.40061 0.38882 1.030 0.302863
scale(year):systS3 0.44798 0.37297 1.201 0.229698
scale(year):systS4 -0.01245 0.36549 -0.034 0.972819
scale(year):systS5 1.06031 0.37957 2.793 0.005215 **
scale(year):timingavant1 0.07949 0.09954 0.799 0.424489
systS2:timingavant1 -0.36039 0.12128 -2.972 0.002963 **
systS3:timingavant1 -0.56704 0.11777 -4.815 1.47e-06 ***
systS4:timingavant1 -0.39785 0.11984 -3.320 0.000901 ***
systS5:timingavant1 -0.06724 0.14990 -0.449 0.653770
scale(year):systS2:timingavant1 -0.15246 0.11992 -1.271 0.203628
scale(year):systS3:timingavant1 -0.04057 0.11556 -0.351 0.725543
scale(year):systS4:timingavant1 -0.49134 0.11614 -4.231 2.33e-05 ***
scale(year):systS5:timingavant1 -0.34391 0.13427 -2.561 0.010429 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
I wish to set up constrats to test if the slopes for scale(year):syst
differ from zero at level 1 of timing.
It seems like we can do this with testInteractions but I'm not sure if my
set up is correct:
testInteractions(mod1,custom=list(syst=c(1,0,0,0,0),timing=c(1,0)),
slope="scale(year)", adjustment="none")
The preceding code yields the following:
Adjusted slope for scale(year)
Chisq Test:
P-value adjustment method: none
Value Df Chisq Pr(>Chisq)
syst1 : timing1 -0.82831 1 0.6464 0.4214
This doesn't seem correct because Value doesn't represent the slope for the
first level of "syst" at the first level of "timing".
Could anyone shed their light?
Thank you very much!
Guillaume ADEUX
[[alternative HTML version deleted]]
I have the following model:
mod=glmer(Weed_density~block+scale(year)*syst*timing+(1|year)+(1|plot)+(1|plot:year)+(1|ID_quadrat)+(1|OLRE)+offset(log(size_quadrat)),family=poisson(link="log"),dat=WEED)
I have a significant triple interaction between time : treatment : season.
Time is continuous, syst(=treatment) has 5 levels and season(=sampling
session) has two levels.
Here is the model output:
Generalized linear mixed model fit by maximum likelihood (Laplace
Approximation) ['glmerMod']
Family: poisson ( log )
Formula: WDall ~ block + scale(year) * syst * timing + (1 | year) + (1
| plot) + (1 | plot:year) + (1 | ID_quadrat) + (1 | OLRE) +
offset(log(size_quadrat))
Data: WEED_paired_2
Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2e+05))
AIC BIC logLik deviance df.resid
21206.3 21371.9 -10577.2 21154.3 4286
Scaled residuals:
Min 1Q Median 3Q Max
-1.6531 -0.4373 -0.1646 0.1426 2.6313
Random effects:
Groups Name Variance Std.Dev.
OLRE (Intercept) 4.456e-01 6.675e-01
ID_quadrat (Intercept) 1.011e+00 1.006e+00
plot:year (Intercept) 1.429e+00 1.195e+00
year (Intercept) 5.635e-15 7.506e-08
plot (Intercept) 0.000e+00 0.000e+00
Number of obs: 4312, groups: OLRE, 4312; ID_quadrat, 2156; plot:year,
86; year, 17; plot, 10
Fixed effects:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.84765 0.33352 -2.542 0.011036 *
blockD -0.28663 0.27596 -1.039 0.298971
scale(year) 0.11385 0.25128 0.453 0.650500
systS2 2.21797 0.43765 5.068 4.02e-07 ***
systS3 2.97934 0.42857 6.952 3.61e-12 ***
systS4 2.64787 0.43488 6.089 1.14e-09 ***
systS5 0.55059 0.45565 1.208 0.226912
timingavant1 1.87971 0.10286 18.275 < 2e-16 ***
scale(year):systS2 0.40061 0.38882 1.030 0.302863
scale(year):systS3 0.44798 0.37297 1.201 0.229698
scale(year):systS4 -0.01245 0.36549 -0.034 0.972819
scale(year):systS5 1.06031 0.37957 2.793 0.005215 **
scale(year):timingavant1 0.07949 0.09954 0.799 0.424489
systS2:timingavant1 -0.36039 0.12128 -2.972 0.002963 **
systS3:timingavant1 -0.56704 0.11777 -4.815 1.47e-06 ***
systS4:timingavant1 -0.39785 0.11984 -3.320 0.000901 ***
systS5:timingavant1 -0.06724 0.14990 -0.449 0.653770
scale(year):systS2:timingavant1 -0.15246 0.11992 -1.271 0.203628
scale(year):systS3:timingavant1 -0.04057 0.11556 -0.351 0.725543
scale(year):systS4:timingavant1 -0.49134 0.11614 -4.231 2.33e-05 ***
scale(year):systS5:timingavant1 -0.34391 0.13427 -2.561 0.010429 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
I wish to set up constrats to test if the slopes for scale(year):syst
differ from zero at level 1 of timing.
It seems like we can do this with testInteractions but I'm not sure if my
set up is correct:
testInteractions(mod1,custom=list(syst=c(1,0,0,0,0),timing=c(1,0)),
slope="scale(year)", adjustment="none")
The preceding code yields the following:
Adjusted slope for scale(year)
Chisq Test:
P-value adjustment method: none
Value Df Chisq Pr(>Chisq)
syst1 : timing1 -0.82831 1 0.6464 0.4214
This doesn't seem correct because Value doesn't represent the slope for the
first level of "syst" at the first level of "timing".
Could anyone shed their light?
Thank you very much!
Guillaume ADEUX
[[alternative HTML version deleted]]