Cueva, Jorge
2018-06-13 15:35:21 UTC
Hello, I am trying fit a glmer where the fixed variables has a different number of observations (72 and 60). With the models where the variables has the full observations I donŽt have problems but yes in the models where some of its variables has 60 observations. In the second case, all work well until I compute the R2m and R2c and I get the error "fitting model with the observation-level random effect term failed. Add the term manually", so, when I ingress the observation level the AIC increase 2 points, and miss 1 df. Please how I might work in these cases??
First case...
glmer(Spp~1+Mth.Prec+Soil.depth+Drainage+(1|Cluster),data = VariabRL,family=poisson,glmerControl(optimizer="bobyqa", optCtrl = list(maxfun = 2e5)))
Second case...
glmer(Spp~1+Mth.Prec+Soil.depth+Drainage+(1|Cluster)+(1|X),data = VariabRL,family=poisson,glmerControl(optimizer="bobyqa", optCtrl = list(maxfun = 2e5)))
Mth.Prec = 72 observations
Soil.depth and Drainage = 60 observations
X = observation level
Thanks a lot
Jorge Cueva Ortiz
Ing. Forestal
ECU: 0993085161
GER: 0049 1631327886
[[alternative HTML version deleted]]
First case...
glmer(Spp~1+Mth.Prec+Soil.depth+Drainage+(1|Cluster),data = VariabRL,family=poisson,glmerControl(optimizer="bobyqa", optCtrl = list(maxfun = 2e5)))
Second case...
glmer(Spp~1+Mth.Prec+Soil.depth+Drainage+(1|Cluster)+(1|X),data = VariabRL,family=poisson,glmerControl(optimizer="bobyqa", optCtrl = list(maxfun = 2e5)))
Mth.Prec = 72 observations
Soil.depth and Drainage = 60 observations
X = observation level
Thanks a lot
Jorge Cueva Ortiz
Ing. Forestal
ECU: 0993085161
GER: 0049 1631327886
[[alternative HTML version deleted]]